If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2+7t-5=0
a = -2; b = 7; c = -5;
Δ = b2-4ac
Δ = 72-4·(-2)·(-5)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3}{2*-2}=\frac{-10}{-4} =2+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3}{2*-2}=\frac{-4}{-4} =1 $
| 2/3=3/8r | | 6u-8+2(4u+5)=4(u+1) | | 1/4(n+7)=9/4-n | | 180=x^2+10x | | -8(m+3)=-7 | | (8x+21)^2=27 | | 7/10e=322 | | -2+7=n | | x÷(-2)=8 | | -4/9z=-6 | | 3x^2+11x=6 | | X/2-x/4+2=x+2 | | 3.2x-1.4=5 | | 2/3(2x+3)=8 | | 7y-12y-12=5y+8 | | 8/4z-3=5/9z | | (6x+1)^3=27 | | 3k-5+5k-13=6+6k | | n(n-1)(n+1)=-336 | | 1-p+7p=1 | | 3(y+5)=-6(3y-2)+6y | | (2x)^2=0.0841-0.58x+x^2 | | 3(-4x+5)+6=9 | | 15x-15=-4x | | (10+3)+5+x=180 | | 6/17=x/20 | | 10x+3=x+93 | | 4x+20=35 | | 4(y-2)-8=-7(-3y+2)-y | | 7(x+9)+7=10x-3(x-4) | | |k+1|=6 | | 10x+40=x^2+7 |